On ε-Entropy of Sobolev and Nikolsky Classes in Uniform Metrics on Arbitrary Compacts

A. B. Khodulev
Keldysh Institute of Applied Mathematics, Moscon, Russia
Communicated by Allan Pinkus

Received February 21, 1992; accepted in revised form March 8, 1993

Abstract

This paper is devoted to the study of ε-entropy of the Nikolsky classes $H_{\infty}^{\alpha}\left(I^{s}\right)$ in $C(K)$, where K is an arbitrary compact set in I^{s}. For a connected set K the order of ε-entropy is known to be the same as the order of Komolgorov's ε-dimension. Without connectedness this is not the case. The exact order is given in terms of two functions characterizing "density" and "discontinuity" of the compact K. © 1994 Academic Press, Inc.

1. Theorems

Let us fix some notation. In what follows s denotes the dimension of the space where the compact set K lies, $I:=[0,1]$, and $I^{s}:=[0,1]^{s} \subset \mathbb{R}^{s}$. Let K be some nonempty compact subset of I^{s}. We will consider the ε-entropy of the bounded Nikolsky class $C H_{\infty}^{\alpha}\left(I^{s}\right):=H_{\infty}^{\alpha}\left(I^{s}\right) \cap B C\left(I^{s}\right)$ in the seminorm $C(K):\|f(\cdot)\|_{C(K)}:=\sup _{x \in K}|f(x)|$. Here $B X$ denotes the unit ball of the Banach space X, and for $0<\alpha \leqslant 1, H_{\infty}^{\alpha}\left(I^{s}\right):=\{f(\cdot) \mid \forall x, y \in$ $\left.I^{s}|f(x)-f(y)| \leqslant d(x, y)^{\alpha}\right\}$; while for $\alpha>1 H_{\infty}^{\alpha}\left(I^{s}\right):=\left\{f(\cdot) \in C^{|r|}\left(I^{s}\right) \mid f^{(r)} \in\right.$ $\left.H_{\infty}^{\beta}\left(I^{s}\right), \quad \alpha=|r|+\beta, \quad r \in \mathbb{Z}_{+}^{s}, \quad 0<\beta \leqslant 1\right\}$. Here $|r|:=r_{1}+\cdots+r_{s}, \quad$ and $f^{(r)}:=\partial^{|r|} f / \partial x_{1}^{r_{1}} \cdots \partial x_{s}^{r_{s}}$. (For integer α this is the ordinary Sobolev class.) We treat \mathbb{R}^{s} as a Banach space with the norm l_{∞}^{s} so that the distance, $d(x, y):=\max _{i}\left|x_{i}-y_{i}\right|$. The symbol $U_{\delta}(A)$ for a set $A \subset I^{s}$ means the δ-neighborhood of the set K, that is, $\left\{x \in I^{s} \mid d(x, K)<\delta\right\}$. We will consider ε-entropy [1], given by

$$
\mathscr{H}_{\varepsilon}(C, X):=\log (\min \{\operatorname{Card} M \mid M \subset C, \forall c \in C d(c, M, X) \leqslant \varepsilon\} .
$$

(Here $d(c, M, X)$ is the distance of a point c from a set M in the Banach space $X ; d(c, M, X):=\inf \left\{d_{X}(c, y) \mid y \in M\right\}$. Here and below \log means $\log _{2}$.) To compare it with Kolmogorov's widths we use Kolmogorov's ε-dimension: $\mathscr{K}_{\varepsilon}(C, X):=\min \left\{k \mid d_{k}(C, X) \leqslant \varepsilon\right\}$, where $d_{k}(C, X)$ is the ordinary Kolmogorov k-width of C in X [2].

We will write, as usual, $f(\cdot) \ll g(\cdot)$ if $|f(\varepsilon)|<c|g(\varepsilon)|$ for some positive constant c and small enough $\varepsilon ; f(\cdot) \asymp g(\cdot)$ if $f(\cdot) \ll g(\cdot)$ and $g(\cdot) \ll f(\cdot)$; $f(\cdot)<g(\cdot)$ if $\lim _{\varepsilon \rightarrow 0} f(\varepsilon) / g(\varepsilon)=0$.

To define the mentioned characteristics of "density" and "discontinuity" (functions $n(h)$ and $c(h)$) let us introduce the standard subdivision of the cube I^{s} and some related notions. For given $h>0$ and

$$
\xi=\left(n_{1}, \ldots, n_{s}\right), \quad n_{i} \in \mathbb{Z}, 0 \leqslant n_{i}<\frac{1}{h}
$$

we set

$$
B_{\xi, h}:=\left\{\left(x_{1}, \ldots, x_{s}\right) \in \mathbb{R}^{s} \mid n_{i} h \leqslant x_{i}<\left(n_{i}+1\right) h\right\} .
$$

(If $n_{i}=(1 / h)-1$ replace the last " $<$ " with " \leqslant " to cover the whole cube.) Ordinarily, we set $h=2^{-k}$:

$$
\begin{aligned}
n(h) & :=\operatorname{Card}\left\{B_{\xi, h} \mid B_{\xi, h} \cap K \neq \varnothing\right\} \\
K_{h} & :=\bigcup\left\{B_{5, h} \mid B_{\xi, h} \cap K \neq \varnothing\right\} \\
c(h) & :=\text { the number of connected components of } K_{h} .
\end{aligned}
$$

Thus, $K_{h} \supset K$ and K_{h} is the union of $n(h)$ small cubes with edge of length h.

THEOREM 1. Using the above notation,

$$
\mathscr{K}_{i}\left(H_{\infty}^{\alpha}\left(I^{s}\right), C(K)\right) \asymp \mathscr{K}_{i}\left(C H_{\infty}^{\alpha}\left(I^{s}\right), C(K)\right) \asymp n\left(\varepsilon^{1 / x}\right)
$$

This is a simple fact that we will not prove here. Its proof can be easily deduced from our discussion of ε-entropy.

It was shown in [1] that for a connected set K the ε-entropy has the same order. The problem of calculating the ε-entropy in the general case was posed at Tikhomirov's seminar on approximation theory and extremal problems at the Moscow State University.

To estimate ε-entropy the function $n(h)$ alone is insufficient. The result of this paper is the following:

Theorem 2. Using the above notation,

$$
\begin{equation*}
\mathscr{H}_{\varepsilon}\left(C H_{\infty}^{\alpha}\left(I^{s}\right), C(K)\right) \asymp n\left(\varepsilon^{1 / \alpha}\right)+\int_{\varepsilon^{1 / ; z}}^{1} \frac{c(h)}{h} d h . \tag{1}
\end{equation*}
$$

Proof. Note that for any $a>0, n(h) \leqslant([a]+2)^{s} n(a h)$ ([a] is the greatest integer less than or equal to a) and $c(h) \leqslant n(h)$. It follows that for
bounded (separated from zero) $a<1, n(a h) \asymp n(h)$ and $\int_{a h}^{h}(c(x) / x) d x \leqslant$ $\int_{a h}^{h}(n(x) / x) d x \leqslant n(h)$. It means that the order of the right-hand side of (1) is not changed when ε is multiplied by a bounded factor. Indeed. if $I(\varepsilon)$ means the right-hand side of (1) and $0<a_{0}<a<1$, then

$$
I(a \varepsilon)=n\left((a \varepsilon)^{1 / \alpha}\right)+\int_{(a \varepsilon)^{1 ; \alpha}}^{\varepsilon^{1 / x}} \frac{c(h)}{h} d h+\int_{\varepsilon^{1 / \alpha}}^{1} \frac{c(h)}{h} d h \geqslant \frac{1}{2^{s}} n\left(\varepsilon^{1 / \alpha}\right)+\int_{\varepsilon^{1 / \alpha}}^{1} \frac{c(h)}{h} d h
$$

and

$$
I(a \varepsilon) \ll n\left(\varepsilon^{1 / \alpha}\right)+n\left(\varepsilon^{1 / \alpha}\right)+\int_{\varepsilon^{1 / \alpha}}^{1} \frac{c(h)}{h} d h \ll I(\varepsilon) .
$$

Thus, it suffices to prove the theorem for some geometric sequence of ε_{n}, and, moreover, the ε in the ε-entropy need not be necessarily the same as ε in the right-hand part of (1)-they may differ by a bounded factor (we shall use this possibility later). So we set $\varepsilon_{n}^{1 / \alpha}=2^{-n}$, and denote $h_{k}:=2^{k-n}$, $k=0, \ldots, n$. Using the above equivalences we obtain:

$$
\int_{\varepsilon^{1 / \alpha}}^{1} \frac{c(h)}{h} d h=\int_{h_{0}}^{1} \frac{c(h)}{h} d h=\sum_{k=1}^{n} \int_{h_{k-1}}^{h_{k}} \frac{c(h)}{h} d h\left\{\begin{array}{l}
\gg \sum_{k=1}^{n} c\left(h_{k}\right) \\
<\sum_{k=1}^{n} c\left(h_{k-1}\right)
\end{array} .\right.
$$

The last two sums differ by $c\left(h_{0}\right)-c\left(h_{n}\right) \ll n\left(h_{0}\right)$. Therefore,

$$
\begin{aligned}
n\left(h_{0}\right)+\int_{h_{0}}^{1} \frac{c(h)}{h} d h & \asymp n\left(h_{0}\right)+\sum_{k=1}^{n} c\left(h_{k}\right) \\
& \asymp n\left(h_{0}\right)+\sum_{k=1}^{n-1} k\left(c\left(h_{k}\right)-c\left(h_{k+1}\right)\right)+(n-1) c\left(h_{n}\right) \\
& =n\left(h_{0}\right)+\sum_{k=1}^{n-1} k\left(c\left(h_{k}\right)-c\left(h_{k+1}\right)\right)+n-1 .
\end{aligned}
$$

In the last equality we use $c\left(h_{n}\right)=c(1)=1$. (Incidentally, $c\left(h_{n-1}\right)$ is also equal to 1 , but we ignore this fact.) Thus, (1) is equivalent to

$$
\begin{equation*}
\left.\mathscr{H}_{\varepsilon}\left(C H_{\infty}^{\alpha}\left(I^{s}\right), C(K)\right)\right) \asymp n\left(h_{0}\right)+n-1+\sum_{k=1}^{n-1} k\left(c\left(h_{k}\right)-c\left(h_{k+1}\right)\right) . \tag{2}
\end{equation*}
$$

This is the statement we shall prove.
Let A be any set containing exactly one point from each cube $B_{\xi, h_{0}}$ belonging to $K_{h_{0}}$; Card $A=n\left(h_{0}\right)$. We number the points of A in "the least distance order." Namely, we assume $A=\left\{a_{i}\right\}_{i=1}^{n\left(h_{0}\right)}$, and for each $i>1$ $d\left(a_{i}, A_{i}\right)=d\left(A \backslash A_{i}, A_{i}\right)$, where $A_{i}=\left\{a_{j}\right\}_{j=1}^{i-1}$. We denote the distance by $d_{i}, d_{i}:=d\left(a_{i}, A_{i}\right)$.

We define the rank $r\left(a_{i}\right)$ of each point a_{i} as follows. For $i>1$ let $r\left(a_{i}\right)$ be the minimal number $r, r=0, \ldots, n$, such that the connected component of $K_{h_{s}}$ containing a_{i} contains also some previous point $a_{j}, j<i$. Let, by definition, $r\left(a_{1}\right)=n+1$.

It is clear from the definition of rank that for any point $a_{i}, i \geqslant 2$, $r:=r\left(a_{i}\right):$

$$
\begin{array}{r}
h_{r-1} \leqslant d_{i} \leqslant 2 h_{r} \quad \text { when } \quad r>0 \\
\text { and } \quad d_{i} \leqslant 2 h_{r} \quad \text { when } \quad r=0 . \tag{3}
\end{array}
$$

In any case $d_{i} \ll h_{r\left|a_{i}\right|}$.
We need to count the number of points a_{i} of a given rank r; let us denote this number by k_{r}. For any connected component of $K_{h_{r}}$ consider the first point a_{i} belonging to this component. Then $r\left(a_{i}\right)>r$. This establishes a one-to-one correspondence between connected components of $K_{h_{r}}$ (there are $c\left(h_{r}\right)$ ones) and points a_{i} with $r\left(a_{i}\right)>r$. This means that $c\left(h_{r}\right)=$ $\sum_{4>r} k_{4}$. Thus

$$
\begin{align*}
& k_{r}=c\left(h_{r-1}\right)-c\left(h_{r}\right), \quad r \geqslant 1, \\
& k_{0}=n\left(h_{0}\right)-\sum_{r=1}^{n+1} k_{r}=n\left(h_{0}\right)-c\left(h_{0}\right) . \tag{4}
\end{align*}
$$

To find the upper bound for ε-entropy we construct an explicit subdivision of $C H_{\infty}^{\alpha}\left(I^{s}\right)$ into sets E_{β} with diam $E_{\beta}<\varepsilon$. Define E_{β} as follows:

$$
E_{\beta}:=\left\{f(\cdot) \in C H_{\infty}^{\alpha}\left(I^{s}\right)\left|\forall a \in A \forall j,|j|<\alpha:\left[\frac{f^{(j)}(a)}{h_{0}^{\alpha-\mid j]}}\right]=\beta(a, j)\right\} .\right.
$$

Here $\beta: A \times\{j| | j \mid<\alpha\} \rightarrow \mathbb{Z}$. For any functions $f_{1}(\cdot), f_{2}(\cdot) \in E_{\beta}$ we have for all $a \in A,\left|f_{1}^{(j)}(a)-f_{2}^{(j)}(a)\right| \leqslant h_{0}^{x-|j|}$. Then on $K \subset K_{h_{0}} \subset U_{h_{0}}(A)$ the Taylor formula yields $\left|f_{1}(\cdot)-f_{2}(\cdot)\right| \ll h_{0}^{\alpha}=\varepsilon$. To estimate the number of nonempty sets E_{β} we build the set of all possible indexes β (i.e., the set of β for which $E_{\beta} \neq \varnothing$) step by step considering the vertices a_{i} in the order established above. Let B_{k} denote the set of all possible values of $\beta\left(a_{k}, \cdot\right)$ when a_{k} is fixed and the values of $\beta\left(a_{i}, j\right)$ are fixed for all j and all $i<k$. (The set B_{k} consists of integer vectors whose components are numbered by the second argument of $\beta\left(a_{k}, \cdot\right)$) We shall prove that Card $B_{k} \leqslant M_{k}$, where M_{k} does not depend on the values of the previous $\beta\left(a_{i}, \cdot\right)$. Then $\operatorname{Card}\{\beta\} \leqslant \Pi M_{k}$ and $\mathscr{H}_{\varepsilon}\left(C H_{\infty}^{\alpha}\left(I^{s}\right), C(K)\right) \ll \log \operatorname{Card}\{\beta\} \leqslant \sum \log M_{k}$.

So, let us estimate M_{k}. For $k=1$ the condition $f(\cdot) \in C H_{\infty}^{\alpha}\left(I^{s}\right)$ implies that $\log M_{1} \asymp \log 1 / h_{0}=n$. For any other vertex a_{k} there exists a nearest previous vertex a_{i} with $d\left(a_{i}, a_{k}\right) \ll h_{r}$, where $r=r\left(a_{k}\right)$ (in fact, $\left.d\left(a_{i}, a_{k}\right) \asymp h_{r}\right)$. Then the values $f^{(j)}\left(a_{i}\right)$ (that are known to within an error
$\leqslant h_{0}^{x-|j|}$) allow us to reconstruct the derivatives at a_{k} by the Taylor formula with an error $\ll h_{r}^{\alpha-|j|}$. Thus, each component of $\beta\left(a_{k}, \cdot\right)$ has $\ll\left(h_{r} / h_{0}\right)^{\alpha-|j|}$ possible values, and in total we have

$$
\log M_{k} \ll\left\{\begin{array}{lll}
1 & \text { for } r=0 \\
r & \text { for } r>0
\end{array} .\right.
$$

Summing all this quantities and using (4) yields

$$
\begin{aligned}
\mathscr{H}_{\varepsilon}\left(C H_{\infty}^{\alpha}\left(I^{s}\right), C(K)\right)< & \sum \log M_{k} \\
& \ll n+\left(n\left(h_{0}\right)-c\left(h_{0}\right)\right) \cdot 1+\sum_{k=1}^{n} k\left(c\left(h_{k-1}\right)-c\left(h_{k}\right)\right) \\
= & n+\left(n\left(h_{0}\right)-c\left(h_{0}\right)\right) \cdot 1+\sum_{k=1}^{n} c\left(h_{k-1}\right)-c\left(h_{k}\right) \\
& +\sum_{k=1}^{n}(k-1)\left(c\left(h_{k-1}\right)-c\left(h_{k}\right)\right) \\
= & \left.n+n\left(h_{0}\right)-1+\sum_{k=0}^{n-1} k\left(c\left(h_{k}\right)\right)-c\left(h_{k+1}\right)\right)
\end{aligned}
$$

which is the right-hand part of (2).
To prove the lower estimate we use a different set A. Here we need $A \subset K$ and the lower bound on distances between points instead of the upper one.

Let $\bar{K}_{h_{0}, i}$ be an arbitrary connected component of $K_{h_{0}}$ and $\left\{B_{\xi_{j}, h_{0}}\right\}$ be the corresponding set of cubes. Let us cut each cube of $B_{\xi, h_{0}}$ in a union of 2^{s} cubelets with the half-edge: $B_{\xi_{j}, h_{0}}=\bigcup_{\gamma \in\{0,1\}^{s}} B_{2 \xi, \gamma, h_{-1}}$. Consider the union of all cubelets with the same γ :

$$
\vec{K}_{h_{0}, i, \gamma}:=\bigcup_{j}\left\{B_{2 \xi_{j}+\gamma, h_{-1}} \subset \bar{K}_{h_{0}, i} \mid B_{2 \xi_{j}+\gamma, h_{-1}} \cap K \neq \varnothing\right\} .
$$

All cubelets in $\bar{K}_{h_{0}, i, \gamma}$ are disjoint with distances $\geqslant h_{-1}=h_{0} / 2$ and $\bigcup_{\gamma} \bar{K}_{h_{0}, i, \gamma} \cap K=\bar{K}_{h_{0}, i} \cap K$. Let the number of h_{0}-cubes in $\bar{K}_{h_{0}, i}$ be m. Each of them contains at least one cubelet intersecting with K. Therefore by the Dirichlet principle there exists γ such that the set $\bar{K}_{h_{0}, i, \gamma}$ contains $\geqslant 2^{-s} m$ cubelets. For such γ choose one point $\in K$ from each cubelet $B_{2 \xi_{j}+\gamma, h_{-1}}$. All these points, for all connected components $\bar{K}_{h 0, i}$, constitute the required set A. The number of points in A, n_{1}, is $\geqslant 2^{-s} n\left(h_{0}\right)$. We order them, $A=\left\{a_{i}\right\}_{i=1}^{n_{1}}$, and define ranks as above. Then instead of (3), (4) the following properties hold:

$$
\begin{align*}
& d_{i} \geqslant \frac{1}{2} h_{r\left(a_{i}\right)} \tag{5}\\
& k_{r}=c\left(h_{r-1}\right)-c\left(h_{r}\right), r \geqslant 1 ; \quad k_{0}=n_{1}-c\left(h_{0}\right) . \tag{6}
\end{align*}
$$

(Here, as above, d_{i} is the distance between a_{i} and the nearest previous point; k_{r} is the number of points of rank r).

To prove the lower bound for the ε-entropy we select a finite-dimensional subset of $C H_{\infty}^{\alpha}\left(I^{s}\right)$ and estimate its volume.

Lemma. For any $\delta>0, B \subset I^{s}$ there exists a function $\chi_{\delta}(B)(\cdot) \in H_{\infty}^{\alpha}\left(I^{s}\right)$ such that

$$
\left.\operatorname{supp} \chi_{\delta}(B) \subset U_{\delta}(B) \& \chi_{\delta}(B)\right|_{B} \equiv \text { const } \equiv\left\|\chi_{\delta}(B)\right\|_{C\left(I^{s}\right)}=c_{1} \delta^{\alpha}
$$

Proof. I suspect this is well known. However, for completeness a sketch of the proof is given below.

We begin with a nonnegative function $\psi(\cdot) \in C^{\infty}\left(\mathbb{R}^{s}\right)$ such that (i) $\operatorname{supp} \psi \subset[-1,1]^{s}$, (ii) $\sum_{n \in \mathbb{Z}^{s}} \psi(\cdot-n) \equiv 1$. Such a function in \mathbb{R}^{s} may be constructed as a product of one-dimensional functions. The required function $\chi_{\delta}(B)$ can then be built as a sum of properly scaled ψ-functions,

$$
\chi_{\delta}(B)(x):=\sum_{y \in\left((\delta / 2) \mathbb{Z}^{s} \cap U_{\delta, 2}(B)\right.} c\left(\frac{\delta}{2}\right)^{\alpha} \psi\left(\frac{x-y}{\delta / 2}\right)
$$

where c is chosen so that $2^{s} c \psi(\cdot) \in H_{\infty}^{x}\left(I^{s}\right)$. Then any sum of $c \psi(\cdot-n)$ over a subset of \mathbb{Z}^{s} will be from $H_{\infty}^{x}\left(I^{s}\right)$. The desired properties of $\chi_{\delta}(B)$ immediately follow from the definition.

Without loss of generality we can assume that c_{1} is not very large (we need this later).

Let us define a function $\varphi_{a}(\cdot)$ for each point $a \in A$ as follows: If $a=a_{1}$ then $\varphi_{a}: \equiv 1 / 2$. Otherwise $\varphi_{a}:=c_{2}^{-1} \chi_{(1 / 8) h_{r}}\left(U_{(1 / 8) h_{r}}(A(a))\right)$, where $r=r(a)$; $A(a)$, when $r>0$, is the subset $A_{h_{r(a)-1}, i}$ that contains a; for $r(a)=0$, $A(a):=a$; the constant c_{2} will be determined later. The property (5) implies that

$$
\begin{equation*}
a \neq b \Rightarrow \operatorname{supp} \varphi_{a}^{\prime} \cap \operatorname{supp} \varphi_{b}^{\prime}=\varnothing \tag{7}
\end{equation*}
$$

where $\operatorname{supp} \varphi^{\prime}$ denotes the union of supports of all derivatives of φ. Indeed, $\operatorname{supp} \varphi_{a}^{\prime} \subset U_{(1 / 4) h_{r}}(A(a)) \backslash U_{(1 / 8) h_{r}}(A(a))$ and all such subsets do not intersect each other. The supports of the functions φ_{a} can intersect but only for points of different ranks:

$$
\begin{equation*}
a \neq b, \quad \operatorname{supp} \varphi_{a} \cap \operatorname{supp} \varphi_{b} \neq \varnothing \Rightarrow r(a) \neq r(b) \tag{8}
\end{equation*}
$$

This also follows from (5). The last consequence of (5):

$$
\begin{equation*}
\varphi_{a_{i}}\left(a_{j}\right)=0, \quad \text { for each } \quad j<i \tag{9}
\end{equation*}
$$

Let us define the set Q of functions

$$
Q:=\left\{\sum_{a \in \mathcal{A}} w_{a} \varphi_{a}(\cdot)|\forall a| w_{a} \mid \leqslant 1\right\} .
$$

We shall prove that $Q \subset C H_{\infty}^{x}\left(I^{s}\right)$. The first step is to prove $Q \subset H_{\infty}^{x}\left(I^{s}\right)$. To do this we need some long and not very elegant reasoning. Here it is.

We use the definition of $H_{\infty}^{x}\left(I^{s}\right)$ directly and estimate $\left|f^{(r)}(x)-f^{(r)}(y)\right|$ for $f \in Q, \alpha=|r|+\beta, \quad r \in \mathbb{Z}_{+}^{s}, \quad 0<\beta \leqslant 1$. Denote $\Delta f:=\left|f^{(r)}(x)-f^{(r)}(y)\right|$. Then $\Delta f \leqslant \sum_{a \in A}\left|w_{a}\right| \Delta \varphi_{a} \leqslant \sum_{a \in A} \Delta \varphi_{a}$. We can exclude the term for $a=a_{1}$ from the last sum because it does not contribute to the sum. For each of the other $\varphi_{a}=c_{2}^{-1} \chi_{(1 / 8) h_{r}}\left(U_{(1 / 8) h_{r}}(A(a))\right)$, split the cube I^{s} into a union of three nonintersecting sets, A_{1}, A_{2}, and A_{3} :

$$
\begin{gathered}
A_{1}(a):=U_{(1 / 8) h_{r}}(A(a)) ; \quad A_{2}(a):=U_{(1 / 4) h_{r}}(A(a)) \backslash U_{(1 / 8) h_{r}}(A(a)) ; \\
A_{3}(a):=I^{s} \backslash U_{(1 / 4) h_{r}}(A(a))
\end{gathered}
$$

Then

$$
\begin{aligned}
\left.\varphi_{a}\right|_{A_{1}} & \equiv \operatorname{const}=\left\|\varphi_{a}\right\|=c_{2}^{-1} c_{1}\left(\frac{1}{8} h_{r(a)}\right)^{\alpha} \\
A_{2} & \supset \operatorname{supp} \varphi_{a}^{\prime} \\
\left.\varphi_{a}\right|_{A_{3}} & \equiv 0
\end{aligned}
$$

For all functions φ_{a} let us see in which set the points x and y lie and split the sum accordingly into nine parts,

$$
\sum \Delta \varphi_{a}=\Sigma_{11}+\Sigma_{12}+\cdots+\Sigma_{33},
$$

where $\sum_{j k}, j, k=1,2,3$, is the sum of $\Delta \varphi_{a}$ over all a such that $x \in A_{j}(a)$, $y \in A_{k}(a)$. Property (7) means that $\Sigma_{12}+\Sigma_{21}+\Sigma_{22}+\Sigma_{23}+\Sigma_{32}$ (all sums including " 2 ") contains at most two terms (one A_{2} including x and maybe another including y), so $\Sigma_{12}+\Sigma_{21}+\Sigma_{22}+\Sigma_{23}+\Sigma_{32} \leqslant 2 c_{2}^{-1} d(x, y)^{\beta}$ because each φ_{a} is from $c_{2}^{-1} H_{\infty}^{\alpha}\left(I^{s}\right)$. For $\alpha>1$ the remaining sums are all zero because $\Delta \varphi_{a}$ involves only derivatives. So it remains to consider the case $\alpha \leqslant 1$, in which case $\beta=\alpha$.

In any case $\Sigma_{33}=0$. Also $\Sigma_{11}=0$ because on A_{1} the function φ_{a} is constant and $\Delta \varphi_{a}=0$. To estimate, say Σ_{13} note that for points a in $\Sigma_{13} \Delta \varphi_{a}=\left\|\varphi_{a}\right\|=c_{1} c_{2}^{-1}\left(\frac{1}{8} h_{r(a)}\right)^{\beta}$; and, by (8), all points a in that sum have different ranks so it can be estimated by use of the geometric series:

$$
\Sigma_{13}<\frac{1}{1-2^{\alpha}} \Delta \varphi_{\tilde{a}}
$$

where \tilde{a} is the point of maximal rank among all those included in Σ_{13}. But $\varphi \tilde{a} \in c_{2}^{-1} H_{\infty}^{\alpha}\left(I^{s}\right)$, so $\Sigma_{13}<\left(1 /\left(1-2^{-\alpha}\right)\right) c_{2}^{-1} d(x, y)^{\beta}$. Clearly, Σ_{31} has the same bound and finally, for any α,

$$
\Delta f \leqslant \sum \Delta \varphi_{a}<\left(2+\frac{2}{1-2^{-\alpha}}\right) c_{2}^{-1} d(x, y)^{\beta} .
$$

So the setting $c_{2}=2+2 /\left(1-2^{-x}\right)$ ensures $Q \subset H_{\infty}^{\alpha}\left(I^{s}\right)$.
To verify inclusion into $B C\left(I^{s}\right)$ let us estimate $\|f\|, f \in Q$. Let $f=\sum w_{a} \varphi_{a}(\cdot) \in Q$. Then

$$
\begin{aligned}
\forall x \in I^{s} \quad|f(x)| & =\left|\sum_{a \in A} w_{a} \varphi_{a}(x)\right| \leqslant \sum_{\substack{a \in \mathcal{A} \\
\varphi_{a} \in(x) \neq 0}}\left|\varphi_{a}(x)\right| \\
& \leqslant \sum_{\substack{a \in A \\
x \in \operatorname{supp} \varphi_{a}}}\left\|\varphi_{a}(\cdot)\right\|=\sum_{\substack{a \in A \\
x \in \operatorname{supp} \varphi_{a} \\
a \neq a_{1}}} c_{1} c_{2}^{-1}\left(\frac{1}{8} h_{r(a)}\right)^{x}+\frac{1}{2} .
\end{aligned}
$$

Property (8) implies that all $r(a)$ in the last sum are different; therefore, we can write the upper estimate for the last sum,

$$
\sum_{m=0}^{n} c_{1} c_{2}^{-1}\left(\frac{1}{8} h_{m}\right)^{\alpha} \leqslant c_{1} c_{2}^{-1} \frac{8^{-\alpha}}{1-2^{-\alpha}} \leqslant \frac{1}{2}
$$

for properly bounded c_{1}.
Let us now turn to finite-dimensional sets. We have

$$
\mathscr{H}_{\varepsilon}\left(C H_{\infty}^{\alpha}\left(I^{s}\right), C(K)\right) \geqslant \mathscr{H}_{\varepsilon}(Q, C(K)) \geqslant \mathscr{H}_{\varepsilon}(Q, C(A))=\mathscr{H}_{\varepsilon}\left(\left.Q\right|_{A}, C(A)\right)
$$

where $\left.Q\right|_{A}$ means the set of all functions in Q restricted to the set A. The set A is finite, Card $A=n_{1}$, so the set $\left.Q\right|_{A}$ is in natural one-to-one correspondence with a finite-dimensional set $Q^{\prime} \subset \mathbb{R}^{n_{1}}\left(f(\cdot) \leftrightarrow\left\langle f\left(a_{i}\right)\right\rangle\right)$. Moreover, this correspondence is an isometry between $C(A)$ and $l_{\infty}^{n_{1}}$. So the ε-entropy of $\left.Q\right|_{A}$ is equal to that of Q^{\prime} and the last can be estimated by the volume of Q^{\prime} in $\mathbb{R}^{n_{1}}: \mathscr{H}_{\varepsilon}\left(Q^{\prime}, C(A)\right) \geqslant \log \left(\right.$ mes $\left.Q^{\prime} /(2 \varepsilon)^{n_{1}}\right)$. Later we do not distinguish $\left.Q\right|_{A}$ and Q^{\prime}. Let us consider the linear mapping of the cube $\left\{\left(w_{a}\right) \in \mathbb{R}^{n_{1}}|\forall a \in A| w_{a} \mid \leqslant 1\right\}$ onto Q^{\prime} that maps each vector (w_{a}) to a function $\sum_{a \in A} w_{a} \varphi_{a}(\cdot)$. Property (9) means that the matrix of this mapping $\left(f_{i j}\right)=\left(\varphi_{a_{i}}\left(a_{j}\right)\right)$ has a triangular form, so its determinant is equal to the product of the diagonal elements, $\varphi_{a_{i}}\left(a_{i}\right)$, and the volume of the image, mes Q^{\prime}, is

$$
\prod_{a \in A} 2 \varphi_{a}(a)=\prod_{a \in A} 2\left\|\varphi_{a}\right\|=\left(\prod_{a \in A^{\prime}} 2 c_{12}^{-1}\left(\frac{1}{8} h_{r(a)}\right)^{\alpha}\right) \cdot 1
$$

(here $A^{\prime}=A \backslash\left\{a_{1}\right\}$). The estimate of $\mathscr{H}_{\varepsilon}$ follows,

$$
\begin{aligned}
\mathscr{H}_{\varepsilon} & \geqslant \sum_{a \in A^{\prime}}\left(\alpha \log h_{r(a)}-\log \varepsilon+c_{3}\right)+\log \frac{1}{2 \varepsilon} \\
& =\sum_{r=0}^{n} k_{r} \cdot\left(\alpha \log h_{r}-\log \varepsilon+c_{3}\right)+\log \frac{1}{2 \varepsilon}
\end{aligned}
$$

where $k_{r}=\operatorname{Card}\{a \in A \mid r(a)=r\}$; the values of k_{r} can be found in (6). We can multiply ε by an appropriate constant (as we have mentioned above, it does not change the order of $\mathscr{H}_{\varepsilon}$) so that $\alpha \log h_{0}-\log \varepsilon+c_{3}=1$ (we will now have $\varepsilon=c h_{0}^{\alpha}$). Then for $r>0, \alpha \log h_{r}-\log \varepsilon+c_{3} \asymp r, \log 1 / 2 \varepsilon \asymp n$. Thus

$$
\begin{aligned}
\mathscr{H}_{\varepsilon} & \gg n_{1}-c\left(h_{0}\right)+\sum_{k=1}^{n} k\left(c\left(h_{k-1}\right)-c\left(h_{k}\right)\right)+n \\
& =n_{1}-c\left(h_{0}\right)+\sum_{k=0}^{n-1}(k+1)\left(c\left(h_{k}\right)-c\left(h_{k+1}\right)\right)+n \\
& =n_{1}-c\left(h_{0}\right)+\sum_{k=0}^{n-1} c\left(h_{k}\right)-c\left(h_{k+1}\right)+\sum_{k=1}^{n-1} k\left(c\left(h_{k}\right)-c\left(h_{k+1}\right)\right)+n \\
& =n_{1}-1+\sum_{k=1}^{n-1} k\left(c\left(h_{k}\right)-c\left(h_{k+1}\right)\right)+n \\
& \geqslant 2^{-s} n\left(h_{0}\right)-1+\sum_{k=1}^{n-1} k\left(c\left(h_{k}\right)-c\left(h_{k+1}\right)\right)+n \\
& \asymp n\left(h_{0}\right)-1+\sum_{k=1}^{n-1} k\left(c\left(h_{k}\right)-c\left(h_{k+1}\right)\right)+n .
\end{aligned}
$$

2. Examples

All examples are one-dimensional.

Example 1. The Cantor Set. Here

$$
n(h) \asymp c(h) \asymp h^{-\log _{3} 2} .
$$

Therefore

$$
\mathscr{K}_{\varepsilon} \asymp \mathscr{H}_{\varepsilon} \asymp \varepsilon^{-\log _{3} 2 / x}=\varepsilon^{-\chi(K) / x},
$$

where $\chi(K)$ is the Hausdorff dimension of the Cantor set K.

Moreover, it immediately follows from (1) that if $n(h) \asymp n^{-\gamma}, \gamma>0$, then $\mathscr{K}_{\varepsilon} \asymp \mathscr{H}_{\varepsilon} \asymp \varepsilon^{-\gamma / \alpha}$.

Example 2.

$$
K=\{0\} \cup\left\{\left.\frac{1}{n} \right\rvert\, n=1,2, \ldots\right\} .
$$

Here $n(h) \asymp c(h) \asymp h^{-1 / 2}$, but $\chi(K)=0$, so

$$
\mathscr{K}_{\varepsilon} \asymp \mathscr{H}_{c} \asymp \varepsilon^{-1 / 2 \alpha} \nsucc \varepsilon^{-x(K) / \chi} .
$$

This illustrates the fact that the considered characteristics relate not to the Hausdorff dimension but to the entropy or metric dimension of the set $K[1]$:

$$
d m(A):=\lim _{\varepsilon \rightarrow 0} \frac{\mathscr{H}_{\varepsilon}(A)}{\log 1 / \varepsilon}
$$

In this example $d m(K)=1 / 2$.
Example 3.

$$
K=\{0\} \cup\left\{2^{-n} \mid n=0,1, \ldots\right\}
$$

Here $n(h) \asymp c(h) \asymp \log h$. We find from (1)

$$
\mathscr{K}_{\varepsilon} \asymp \log \frac{1}{\varepsilon} \quad \mathscr{H}_{\varepsilon} \asymp \log ^{2} \frac{1}{\varepsilon} \succ \mathscr{K}_{\varepsilon} .
$$

In this example the estimate of $\mathscr{K}_{\varepsilon}$ does not give an estimate of the order of Kolmogorov's width $d_{n}\left(H_{\infty}^{\alpha}\left(I^{s}\right), C(K)\right)$. This suggests that ε-dimension is more adequate for the problem discussed than n-width.

In spite of the remark after example 1 there do exist compact K with $\chi(K)>0$ for which $\mathscr{K}_{\varepsilon} \not \not \mathscr{H}_{\varepsilon}$. One such is constructed in this next example.

Example 4. A Cantor-like Set. We begin with the segment

$$
\Delta_{01}=I .
$$

At the k th step, $k=1,2, \ldots$, we construct the set of segments

$$
\Delta_{k i}, i=1,2, \ldots, 2^{k(k+1) / 2}, \quad \text { with length } \quad\left|\Delta_{k i}\right|=2^{-k^{2}}
$$

To do this, let us break each $\Delta_{k-1, i}$ (with length $2^{-(k-1)^{2}}$) into 2^{k} segments with equal lengths $2^{-\left((k-1)^{2}+k\right)}$ and select as Δ_{k} the leftmost part of each
subsegment of length $2^{-k^{2}}$. Define the compact K as the intersection of all these segment systems: $K=\bigcap_{k} \bigcup_{i} \Delta_{k i}$. As can be easily seen, $\chi(K)=1 / 2$. For $n(h)$ and $c(h)$ when $h=2^{-m}$ we have

$$
\begin{aligned}
& n\left(2^{-m}\right)= \begin{cases}2^{k(k+1) / 2}, & \text { when } \quad k^{2}-k<m \leqslant k^{2}, \\
2^{k(k+1) / 2+m-k^{2}}, & \text { when } k^{2}<m \leqslant k^{2}+k\end{cases} \\
& c\left(2^{-m}\right)=2^{k(k+1) / 2}, \quad \text { when } \quad k^{2}-k+1<m \leqslant k^{2}+k+1 .
\end{aligned}
$$

When, for example, $\varepsilon^{1 / x}=2^{-k^{2}}$,

$$
\mathscr{K}_{\varepsilon} \asymp 2^{k(k+1) / 2} ; \quad \mathscr{H}_{\varepsilon} \asymp 2^{k(k+1) / 2} \cdot k \asymp \mathscr{K}_{\varepsilon} \cdot \sqrt{\log \frac{1}{\varepsilon}} .
$$

On the other hand, when $\varepsilon^{1 / \alpha}=2^{-\left(k^{2}-k+1\right)}$,

$$
\mathscr{K}_{\varepsilon} \asymp 2^{k(k+1) / 2} ; \quad \mathscr{H}_{\varepsilon} \asymp 2^{k(k+1) / 2}+2^{k(k-1) / 2} \cdot k \asymp \mathscr{K}_{\varepsilon} .
$$

It can be easily deduced from (1) that the case $\left.\mathscr{H}_{\varepsilon}\right\rangle \mathscr{K}_{\varepsilon}$ is impossible if $n(h) \gg n^{-\gamma}, \gamma>0$. This is the case for all K with nonzero Hausdorff dimension.

References

1. A. N. Kolmogorov and V. M. Tikhomirov, ε-Entropy and ε-capacity of sets in functional spaces, Uspekhi Mat. Nauk. 4, No. 2(86) (1959), 3-86. [Russian]
2. A. Pinkus, " n-Widths in Approximation Theory," Springer-Verlag, Berlin, 1985.
