On ε-Entropy of Sobolev and Nikolsky Classes in Uniform Metrics on Arbitrary Compacts

A. B. KHODULEV

Keldysh Institute of Applied Mathematics, Moscow, Russia Communicated by Allan Pinkus

Received February 21, 1992; accepted in revised form March 8, 1993

This paper is devoted to the study of ε -entropy of the Nikolsky classes $H_{\infty}^{x}(I^{s})$ in C(K), where K is an arbitrary compact set in I^{s} . For a connected set K the order of ε -entropy is known to be the same as the order of Komolgorov's ε -dimension. Without connectedness this is not the case. The exact order is given in terms of two functions characterizing "density" and "discontinuity" of the compact K. © 1994 Academic Press, Inc.

1. THEOREMS

Let us fix some notation. In what follows s denotes the dimension of the space where the compact set K lies, I := [0, 1], and $I^s := [0, 1]^s \subset \mathbb{R}^s$. Let K be some nonempty compact subset of I^s . We will consider the ε -entropy of the bounded Nikolsky class $CH^{\alpha}_{\infty}(I^s) := H^{\alpha}_{\infty}(I^s) \cap BC(I^s)$ in the seminorm $C(K): ||f(\cdot)||_{C(K)} := \sup_{x \in K} |f(x)|$. Here BX denotes the unit ball of the Banach space X, and for $0 < \alpha \le 1$, $H^{\alpha}_{\infty}(I^s) := \{f(\cdot) \mid \forall x, y \in I^s \mid f(x) - f(y) \mid \le d(x, y)^{\alpha}\}$; while for $\alpha > 1$ $H^{\alpha}_{\infty}(I^s) := \{f(\cdot) \in C^{|r|}(I^s) \mid f^{(r)} \in H^{\beta}_{\infty}(I^s), \ \alpha = |r| + \beta, \ r \in \mathbb{Z}^s_+, \ 0 < \beta \le 1\}$. Here $|r| := r_1 + \cdots + r_s$, and $f^{(r)} := \partial^{|r|} f/\partial x_1^{r_1} \cdots \partial x_s^{r_s}$. (For integer α this is the ordinary Sobolev class.) We treat \mathbb{R}^s as a Banach space with the norm I^s_{∞} so that the distance, $d(x, y) := \max_i |x_i - y_i|$. The symbol $U_{\delta}(A)$ for a set $A \subset I^s$ means the δ -neighborhood of the set K, that is, $\{x \in I^s \mid d(x, K) < \delta\}$. We will consider ε -entropy [1], given by

$$\mathscr{H}_{\varepsilon}(C, X) := \log(\min\{\text{Card } M \mid M \subset C, \forall c \in Cd(c, M, X) \leq \varepsilon\}.$$

(Here d(c, M, X) is the distance of a point c from a set M in the Banach space X; $d(c, M, X) := \inf\{d_X(c, y) \mid y \in M\}$. Here and below log means $\log_{2^{\circ}}$) To compare it with Kolmogorov's widths we use Kolmogorov's ε -dimension: $\mathscr{H}_{\varepsilon}(C, X) := \min\{k \mid d_k(C, X) \le \varepsilon\}$, where $d_k(C, X)$ is the ordinary Kolmogorov k-width of C in X [2]. We will write, as usual, $f(\cdot) \leq g(\cdot)$ if $|f(\varepsilon)| < c |g(\varepsilon)|$ for some positive constant c and small enough ε ; $f(\cdot) \simeq g(\cdot)$ if $f(\cdot) \leq g(\cdot)$ and $g(\cdot) \leq f(\cdot)$; $f(\cdot) < g(\cdot)$ if $\lim_{\varepsilon \to 0} f(\varepsilon)/g(\varepsilon) = 0$.

To define the mentioned characteristics of "density" and "discontinuity" (functions n(h) and c(h)) let us introduce the standard subdivision of the cube I^s and some related notions. For given h > 0 and

$$\xi = (n_1, ..., n_s), \qquad n_i \in \mathbb{Z}, \ 0 \le n_i < \frac{1}{h}$$

we set

$$B_{\xi,h} := \{ (x_1, ..., x_s) \in \mathbb{R}^s \mid n_i h \leq x_i < (n_i + 1)h \}.$$

(If $n_i = (1/h) - 1$ replace the last "<" with " \leq " to cover the whole cube.) Ordinarily, we set $h = 2^{-k}$:

$$n(h) := \operatorname{Card} \{ B_{\xi,h} \mid B_{\xi,h} \cap K \neq \emptyset \}$$
$$K_h := \bigcup \{ B_{\xi,h} \mid B_{\xi,h} \cap K \neq \emptyset \}$$

c(h) := the number of connected components of K_h .

Thus, $K_h \supset K$ and K_h is the union of n(h) small cubes with edge of length h.

THEOREM 1. Using the above notation,

$$\mathscr{K}_{\varepsilon}(H^{\alpha}_{\infty}(I^{s}), C(K)) \simeq \mathscr{K}_{\varepsilon}(CH^{\alpha}_{\infty}(I^{s}), C(K)) \simeq n(\varepsilon^{1/\alpha})$$

This is a simple fact that we will not prove here. Its proof can be easily deduced from our discussion of ε -entropy.

It was shown in [1] that for a connected set K the ε -entropy has the same order. The problem of calculating the ε -entropy in the general case was posed at Tikhomirov's seminar on approximation theory and extremal problems at the Moscow State University.

To estimate ε -entropy the function n(h) alone is insufficient. The result of this paper is the following:

THEOREM 2. Using the above notation,

$$\mathscr{H}_{\varepsilon}(CH^{\alpha}_{\infty}(I^{s}), C(K)) \asymp n(\varepsilon^{1/\alpha}) + \int_{\varepsilon^{1/\alpha}}^{1} \frac{c(h)}{h} dh.$$
(1)

Proof. Note that for any a > 0, $n(h) \leq ([a] + 2)^s n(ah)$ ([a] is the greatest integer less than or equal to a) and $c(h) \leq n(h)$. It follows that for

bounded (separated from zero) a < 1, $n(ah) \approx n(h)$ and $\int_{ah}^{h} (c(x)/x) dx \leq \int_{ah}^{h} (n(x)/x) dx \ll n(h)$. It means that the order of the right-hand side of (1) is not changed when ε is multiplied by a bounded factor. Indeed. if $I(\varepsilon)$ means the right-hand side of (1) and $0 < a_0 < a < 1$, then

$$I(a\varepsilon) = n((a\varepsilon)^{1/\alpha}) + \int_{(a\varepsilon)^{1/\alpha}}^{\varepsilon^{1/\alpha}} \frac{c(h)}{h} dh + \int_{\varepsilon^{1/\alpha}}^{1} \frac{c(h)}{h} dh \ge \frac{1}{2^s} n(\varepsilon^{1/\alpha}) + \int_{\varepsilon^{1/\alpha}}^{1} \frac{c(h)}{h} dh$$

and

$$I(a\varepsilon) \ll n(\varepsilon^{1/\alpha}) + n(\varepsilon^{1/\alpha}) + \int_{\varepsilon^{1/\alpha}}^{1} \frac{c(h)}{h} dh \ll I(\varepsilon)$$

Thus, it suffices to prove the theorem for some geometric sequence of ε_n , and, moreover, the ε in the ε -entropy need not be necessarily the same as ε in the right-hand part of (1)—they may differ by a bounded factor (we shall use this possibility later). So we set $\varepsilon_n^{1/\alpha} = 2^{-n}$, and denote $h_k := 2^{k-n}$, k = 0, ..., n. Using the above equivalences we obtain:

$$\int_{e^{1/\alpha}}^{1} \frac{c(h)}{h} dh = \int_{h_0}^{1} \frac{c(h)}{h} dh = \sum_{k=1}^{n} \int_{h_{k-1}}^{h_k} \frac{c(h)}{h} dh \begin{cases} \gg \sum_{k=1}^{n} c(h_k) \\ \ll \sum_{k=1}^{n} c(h_{k-1}) \end{cases}$$

The last two sums differ by $c(h_0) - c(h_n) \ll n(h_0)$. Therefore,

$$n(h_0) + \int_{h_0}^1 \frac{c(h)}{h} dh \approx n(h_0) + \sum_{k=1}^n c(h_k)$$

$$\approx n(h_0) + \sum_{k=1}^{n-1} k(c(h_k) - c(h_{k+1})) + (n-1) c(h_n)$$

$$= n(h_0) + \sum_{k=1}^{n-1} k(c(h_k) - c(h_{k+1})) + n - 1.$$

In the last equality we use $c(h_n) = c(1) = 1$. (Incidentally, $c(h_{n-1})$ is also equal to 1, but we ignore this fact.) Thus, (1) is equivalent to

$$\mathscr{H}_{\varepsilon}(CH^{\alpha}_{\infty}(I^{s}), C(K))) \simeq n(h_{0}) + n - 1 + \sum_{k=1}^{n-1} k(c(h_{k}) - c(h_{k+1})).$$
(2)

This is the statement we shall prove.

Let A be any set containing exactly one point from each cube B_{ξ,h_0} belonging to K_{h_0} ; Card $A = n(h_0)$. We number the points of A in "the least distance order." Namely, we assume $A = \{a_i\}_{i=1}^{n(h_0)}$, and for each i > 1 $d(a_i, A_i) = d(A \setminus A_i, A_i)$, where $A_i = \{a_j\}_{j=1}^{i-1}$. We denote the distance by $d_i, d_i := d(a_i, A_i)$. We define the rank $r(a_i)$ of each point a_i as follows. For i > 1 let $r(a_i)$ be the minimal number r, r = 0, ..., n, such that the connected component of K_{h_r} containing a_i contains also some previous point $a_j, j < i$. Let, by definition, $r(a_1) = n + 1$.

It is clear from the definition of rank that for any point a_i , $i \ge 2$, $r := r(a_i)$:

$$h_{r-1} \leq d_i \leq 2h_r \quad \text{when} \quad r > 0$$

and $d_i \leq 2h_r \quad \text{when} \quad r = 0.$ (3)

In any case $d_i \ll h_{r(a_i)}$.

We need to count the number of points a_i of a given rank r; let us denote this number by k_r . For any connected component of K_{h_r} consider the first point a_i belonging to this component. Then $r(a_i) > r$. This establishes a one-to-one correspondence between connected components of K_{h_r} (there are $c(h_r)$ ones) and points a_i with $r(a_i) > r$. This means that $c(h_r) = \sum_{q>r} k_q$. Thus

$$k_{r} = c(h_{r-1}) - c(h_{r}), \qquad r \ge 1,$$

$$k_{0} = n(h_{0}) - \sum_{r=1}^{n+1} k_{r} = n(h_{0}) - c(h_{0}).$$
(4)

To find the upper bound for ε -entropy we construct an explicit subdivision of $CH^{\alpha}_{\infty}(I^s)$ into sets E_{β} with diam $E_{\beta} \ll \varepsilon$. Define E_{β} as follows:

$$E_{\beta} := \left\{ f(\cdot) \in CH^{\alpha}_{\infty}(I^{s}) \mid \forall a \in A \; \forall j, \; |j| < \alpha : \left[\frac{f^{(j)}(a)}{h_{0}^{\alpha - |j|}} \right] = \beta(a, j) \right\}.$$

Here $\beta: A \times \{j \mid |j| < \alpha\} \to \mathbb{Z}$. For any functions $f_1(\cdot), f_2(\cdot) \in E_\beta$ we have for all $a \in A$, $|f_1^{(j)}(a) - f_2^{(j)}(a)| \leq h_0^{\alpha - |j|}$. Then on $K \subset K_{h_0} \subset U_{h_0}(A)$ the Taylor formula yields $|f_1(\cdot) - f_2(\cdot)| \leq h_0^{\alpha} = \varepsilon$. To estimate the number of nonempty sets E_β we build the set of all possible indexes β (i.e., the set of β for which $E_\beta \neq \emptyset$) step by step considering the vertices a_i in the order established above. Let B_k denote the set of all possible values of $\beta(a_k, \cdot)$ when a_k is fixed and the values of $\beta(a_i, j)$ are fixed for all j and all i < k. (The set B_k consists of integer vectors whose components are numbered by the second argument of $\beta(a_k, \cdot)$.) We shall prove that Card $B_k \leq M_k$, where M_k does not depend on the values of the previous $\beta(a_i, \cdot)$. Then Card $\{\beta\} \leq \prod M_k$ and $\mathscr{H}_{\varepsilon}(CH_{\infty}^{\alpha}(I^s), C(K)) \leq \log Card \{\beta\} \leq \sum \log M_k$.

So, let us estimate M_k . For k = 1 the condition $f(\cdot) \in CH^{\alpha}_{\infty}(I^s)$ implies that $\log M_1 \simeq \log 1/h_0 = n$. For any other vertex a_k there exists a nearest previous vertex a_i with $d(a_i, a_k) \ll h_r$, where $r = r(a_k)$ (in fact, $d(a_i, a_k) \simeq h_r$). Then the values $f^{(j)}(a_i)$ (that are known to within an error

 $\leq h_0^{\alpha-1/l}$) allow us to reconstruct the derivatives at a_k by the Taylor formula with an error $\ll h_r^{\alpha-1/l}$. Thus, each component of $\beta(a_k, \cdot)$ has $\ll (h_r/h_0)^{\alpha-1/l}$ possible values, and in total we have

$$\log M_k \ll \begin{cases} 1 & \text{for } r = 0 \\ r & \text{for } r > 0 \end{cases}$$

Summing all this quantities and using (4) yields

$$\mathcal{H}_{\varepsilon}(CH_{\infty}^{\alpha}(I^{s}), C(K)) \ll \sum \log M_{k}$$

$$\ll n + (n(h_{0}) - c(h_{0})) \cdot 1 + \sum_{k=1}^{n} k(c(h_{k-1}) - c(h_{k}))$$

$$= n + (n(h_{0}) - c(h_{0})) \cdot 1 + \sum_{k=1}^{n} c(h_{k-1}) - c(h_{k})$$

$$+ \sum_{k=1}^{n} (k-1)(c(h_{k-1}) - c(h_{k}))$$

$$= n + n(h_{0}) - 1 + \sum_{k=0}^{n-1} k(c(h_{k})) - c(h_{k+1})),$$

which is the right-hand part of (2).

To prove the lower estimate we use a different set A. Here we need $A \subset K$ and the lower bound on distances between points instead of the upper one.

Let $\bar{K}_{h_0,i}$ be an arbitrary connected component of K_{h_0} and $\{B_{\xi_j,h_0}\}$ be the corresponding set of cubes. Let us cut each cube of B_{ξ_j,h_0} in a union of 2^s cubelets with the half-edge: $B_{\xi_j,h_0} = \bigcup_{\gamma \in \{0,1\}^s} B_{2\xi_j + \gamma,h_{-1}}$. Consider the union of all cubelets with the same γ :

$$\bar{K}_{h_0,i,\gamma} := \bigcup_j \{ B_{2\xi_j + \gamma,h_{-1}} \subset \bar{K}_{h_0,i} \mid B_{2\xi_j + \gamma,h_{-1}} \cap K \neq \emptyset \}.$$

All cubelets in $\overline{K}_{h_0,i,\gamma}$ are disjoint with distances $\ge h_{-1} = h_0/2$ and $\bigcup_{\gamma} \overline{K}_{h_0,i,\gamma} \cap K = \overline{K}_{h_0,i} \cap K$. Let the number of h_0 -cubes in $\overline{K}_{h_0,i}$ be *m*. Each of them contains at least one cubelet intersecting with *K*. Therefore by the Dirichlet principle there exists γ such that the set $\overline{K}_{h_0,i,\gamma}$ contains $\ge 2^{-s}m$ cubelets. For such γ choose one point $\in K$ from each cubelet $B_{2\xi_j+\gamma,h_{-1}}$. All these points, for all connected components $\overline{K}_{h_0,i}$, constitute the required set *A*. The number of points in *A*, n_1 , is $\ge 2^{-s}n(h_0)$. We order them, $A = \{a_i\}_{i=1}^{n_1}$, and define ranks as above. Then instead of (3), (4) the following properties hold:

$$d_i \ge \frac{1}{2} h_{r(a_i)} \tag{5}$$

$$k_r = c(h_{r-1}) - c(h_r), r \ge 1;$$
 $k_0 = n_1 - c(h_0).$ (6)

(Here, as above, d_i is the distance between a_i and the nearest previous point; k_r is the number of points of rank r).

To prove the lower bound for the ε -entropy we select a finite-dimensional subset of $CH^{\alpha}_{\infty}(I^{s})$ and estimate its volume.

LEMMA. For any $\delta > 0$, $B \subset I^s$ there exists a function $\chi_{\delta}(B)(\cdot) \in H^{\alpha}_{\infty}(I^s)$ such that

$$\operatorname{supp} \chi_{\delta}(B) \subset U_{\delta}(B) \And \chi_{\delta}(B)|_{B} \equiv \operatorname{const} \equiv \|\chi_{\delta}(B)\|_{C(I^{s})} = c_{1}\delta^{\alpha}.$$

Proof. I suspect this is well known. However, for completeness a sketch of the proof is given below.

We begin with a nonnegative function $\psi(\cdot) \in C^{\infty}(\mathbb{R}^s)$ such that (i) supp $\psi \subset [-1, 1]^s$, (ii) $\sum_{n \in \mathbb{Z}^3} \psi(\cdot - n) \equiv 1$. Such a function in \mathbb{R}^s may be constructed as a product of one-dimensional functions. The required function $\chi_{\delta}(B)$ can then be built as a sum of properly scaled ψ -functions,

$$\chi_{\delta}(B)(x) := \sum_{y \in ((\delta/2)\mathbb{Z})^{s} \cap U_{\delta/2}(B)} c\left(\frac{\delta}{2}\right)^{\alpha} \psi\left(\frac{x-y}{\delta/2}\right),$$

where c is chosen so that $2^{s}c\psi(\cdot) \in H^{*}_{\infty}(I^{s})$. Then any sum of $c\psi(\cdot - n)$ over a subset of \mathbb{Z}^{s} will be from $H^{*}_{\infty}(I^{s})$. The desired properties of $\chi_{\delta}(B)$ immediately follow from the definition.

Without loss of generality we can assume that c_1 is not very large (we need this later).

Let us define a function $\varphi_a(\cdot)$ for each point $a \in A$ as follows: If $a = a_1$ then $\varphi_a := 1/2$. Otherwise $\varphi_a := c_2^{-1} \chi_{(1/8) h_r}(U_{(1/8) h_r}(A(a)))$, where r = r(a); A(a), when r > 0, is the subset $A_{h_{r(a)-1}, i}$ that contains a; for r(a) = 0, A(a) := a; the constant c_2 will be determined later. The property (5) implies that

$$a \neq b \Rightarrow \operatorname{supp} \varphi'_a \cap \operatorname{supp} \varphi'_b = \emptyset, \tag{7}$$

where supp φ' denotes the union of supports of all derivatives of φ . Indeed, supp $\varphi'_a \subset U_{(1/4)h_r}(A(a)) \setminus U_{(1/8)h_r}(A(a))$ and all such subsets do not intersect each other. The supports of the functions φ_a can intersect but only for points of different ranks:

$$a \neq b$$
, $\operatorname{supp} \varphi_a \cap \operatorname{supp} \varphi_b \neq \emptyset \Rightarrow r(a) \neq r(b).$ (8)

This also follows from (5). The last consequence of (5):

$$\varphi_{a_i}(a_j) = 0, \quad \text{for each } j < i.$$
 (9)

Let us define the set Q of functions

$$Q := \left\{ \sum_{a \in \mathcal{A}} w_a \varphi_a(\cdot) \mid \forall a \mid w_a \mid \leq 1 \right\}.$$

We shall prove that $Q \subset CH^{\alpha}_{\infty}(I^{s})$. The first step is to prove $Q \subset H^{\alpha}_{\infty}(I^{s})$. To do this we need some long and not very elegant reasoning. Here it is.

We use the definition of $H^{\frac{1}{\alpha}}(I^{s})$ directly and estimate $|f^{(r)}(x) - f^{(r)}(y)|$ for $f \in Q$, $\alpha = |r| + \beta$, $r \in \mathbb{Z}_{+}^{s}$, $0 < \beta \leq 1$. Denote $\Delta f := |f^{(r)}(x) - f^{(r)}(y)|$. Then $\Delta f \leq \sum_{a \in A} |w_{a}| \Delta \varphi_{a} \leq \sum_{a \in A} \Delta \varphi_{a}$. We can exclude the term for $a = a_{1}$ from the last sum because it does not contribute to the sum. For each of the other $\varphi_{a} = c_{2}^{-1} \chi_{(1/8) h_{r}}(U_{(1/8) h_{r}}(A(a)))$, split the cube I^{s} into a union of three nonintersecting sets, A_{1}, A_{2} , and A_{3} :

$$A_1(a) := U_{(1/8)h_r}(A(a)); \qquad A_2(a) := U_{(1/4)h_r}(A(a)) \setminus U_{(1/8)h_r}(A(a));$$
$$A_3(a) := I^s \setminus U_{(1/4)h_r}(A(a))$$

Then

$$\varphi_a|_{A_1} \equiv \text{const} = \|\varphi_a\| = c_2^{-1} c_1 \left(\frac{1}{8} h_{r(a)}\right)^{\alpha}$$
$$A_2 \supset \text{supp } \varphi'_a$$
$$\varphi_a|_{A_1} \equiv 0.$$

For all functions φ_a let us see in which set the points x and y lie and split the sum accordingly into nine parts,

$$\sum \Delta \varphi_a = \Sigma_{11} + \Sigma_{12} + \cdots + \Sigma_{33},$$

where \sum_{jk} , j, k = 1, 2, 3, is the sum of $\Delta \varphi_a$ over all a such that $x \in A_j(a)$, $y \in A_k(a)$. Property (7) means that $\sum_{12} + \sum_{21} + \sum_{22} + \sum_{23} + \sum_{32}$ (all sums including "2") contains at most two terms (one A_2 including x and maybe another including y), so $\sum_{12} + \sum_{21} + \sum_{22} + \sum_{32} \leq 2c_2^{-1}d(x, y)^{\beta}$ because each φ_a is from $c_2^{-1}H_{\infty}^{\alpha}(I^s)$. For $\alpha > 1$ the remaining sums are all zero because $\Delta \varphi_a$ involves only derivatives. So it remains to consider the case $\alpha \leq 1$, in which case $\beta = \alpha$.

In any case $\Sigma_{33} = 0$. Also $\Sigma_{11} = 0$ because on A_1 the function φ_a is constant and $\Delta \varphi_a = 0$. To estimate, say Σ_{13} note that for points *a* in $\Sigma_{13} \Delta \varphi_a = \|\varphi_a\| = c_1 c_2^{-1} (\frac{1}{8} h_{r(a)})^{\beta}$; and, by (8), all points *a* in that sum have different ranks so it can be estimated by use of the geometric series:

$$\Sigma_{13} < \frac{1}{1-2^{\alpha}} \varDelta \varphi_{\tilde{a}},$$

where \tilde{a} is the point of maximal rank among all those included in Σ_{13} . But $\varphi \tilde{a} \in c_2^{-1} H_{\infty}^{\alpha}(I^s)$, so $\Sigma_{13} < (1/(1-2^{-\alpha})) c_2^{-1} d(x, y)^{\beta}$. Clearly, Σ_{31} has the same bound and finally, for any α ,

$$\Delta f \leq \sum \Delta \varphi_a < \left(2 + \frac{2}{1 - 2^{-\alpha}}\right) c_2^{-1} d(x, y)^{\beta}.$$

So the setting $c_2 = 2 + 2/(1 - 2^{-\alpha})$ ensures $Q \subset H^{\alpha}_{\infty}(I^s)$.

To verify inclusion into $BC(I^s)$ let us estimate ||f||, $f \in Q$. Let $f = \sum w_a \varphi_a(\cdot) \in Q$. Then

$$\begin{aligned} \forall x \in I^s \qquad |f(x)| &= \left| \sum_{a \in A} w_a \varphi_a(x) \right| \leq \sum_{\substack{a \in A \\ \varphi_a(x) \neq 0}} |\varphi_a(x)| \\ &\leq \sum_{\substack{a \in A \\ x \in \text{supp} \varphi_a}} \|\varphi_a(\cdot)\| = \sum_{\substack{a \in A \\ x \in \text{supp} \varphi_a \\ a \neq a_1}} c_1 c_2^{-1} (\frac{1}{8} h_{r(a)})^{\alpha} + \frac{1}{2}. \end{aligned}$$

Property (8) implies that all r(a) in the last sum are different; therefore, we can write the upper estimate for the last sum,

$$\sum_{n=0}^{n} c_1 c_2^{-1} \left(\frac{1}{8} h_m\right)^{\alpha} \leq c_1 c_2^{-1} \frac{8^{-\alpha}}{1-2^{-\alpha}} \leq \frac{1}{2},$$

for properly bounded c_1 .

Let us now turn to finite-dimensional sets. We have

$$\mathscr{H}_{\varepsilon}(CH^{\alpha}_{\infty}(I^{s}), C(K)) \geq \mathscr{H}_{\varepsilon}(Q, C(K)) \geq \mathscr{H}_{\varepsilon}(Q, C(A)) = \mathscr{H}_{\varepsilon}(Q|_{A}, C(A))$$

where $Q|_A$ means the set of all functions in Q restricted to the set A. The set A is finite, $\operatorname{Card} A = n_1$, so the set $Q|_A$ is in natural one-to-one correspondence with a finite-dimensional set $Q' \subset \mathbb{R}^{n_1}$ $(f(\cdot) \leftrightarrow \langle f(a_i) \rangle)$. Moreover, this correspondence is an isometry between C(A) and $l_\infty^{n_1}$. So the ε -entropy of $Q|_A$ is equal to that of Q' and the last can be estimated by the volume of Q' in \mathbb{R}^{n_1} : $\mathscr{K}_{\varepsilon}(Q', C(A)) \ge \log(\operatorname{mes} Q'/(2\varepsilon)^{n_1})$. Later we do not distinguish $Q|_A$ and Q'. Let us consider the linear mapping of the cube $\{(w_a) \in \mathbb{R}^{n_1} \mid \forall a \in A \mid w_a| \le 1\}$ onto Q' that maps each vector (w_a) to a function $\sum_{a \in A} w_a \varphi_a(\cdot)$. Property (9) means that the matrix of this mapping $(f_{ij}) = (\varphi_{a_i}(a_j))$ has a triangular form, so its determinant is equal to the product of the diagonal elements, $\varphi_{a_i}(a_i)$, and the volume of the image, $\operatorname{mes} Q'$, is

$$\prod_{a \in A} 2\varphi_a(a) = \prod_{a \in A} 2 \|\varphi_a\| = \left(\prod_{a \in A'} 2c_{12}^{-1} (\frac{1}{8}h_{r(a)})^{\alpha}\right) \cdot 1$$

(here $A' = A \setminus \{a_1\}$). The estimate of $\mathscr{H}_{\varepsilon}$ follows,

$$\begin{aligned} \mathscr{H}_{\varepsilon} &\geq \sum_{\alpha \in \mathcal{A}'} \left(\alpha \log h_{r(\alpha)} - \log \varepsilon + c_3 \right) + \log \frac{1}{2\varepsilon} \\ &= \sum_{r=0}^{n} k_r \cdot \left(\alpha \log h_r - \log \varepsilon + c_3 \right) + \log \frac{1}{2\varepsilon} \end{aligned}$$

where $k_r = \operatorname{Card} \{a \in A \mid r(a) = r\}$; the values of k_r can be found in (6). We can multiply ε by an appropriate constant (as we have mentioned above, it does not change the order of $\mathscr{H}_{\varepsilon}$) so that $\alpha \log h_0 - \log \varepsilon + c_3 = 1$ (we will now have $\varepsilon = ch_0^{\alpha}$). Then for r > 0, $\alpha \log h_r - \log \varepsilon + c_3 \approx r$, $\log 1/2\varepsilon \approx n$. Thus

$$\begin{aligned} \mathscr{H}_{\varepsilon} &\ge n_{1} - c(h_{0}) + \sum_{k=1}^{n} k(c(h_{k-1}) - c(h_{k})) + n \\ &= n_{1} - c(h_{0}) + \sum_{k=0}^{n-1} (k+1)(c(h_{k}) - c(h_{k+1})) + n \\ &= n_{1} - c(h_{0}) + \sum_{k=0}^{n-1} c(h_{k}) - c(h_{k+1}) + \sum_{k=1}^{n-1} k(c(h_{k}) - c(h_{k+1})) + n \\ &= n_{1} - 1 + \sum_{k=1}^{n-1} k(c(h_{k}) - c(h_{k+1})) + n \\ &\ge 2^{-s}n(h_{0}) - 1 + \sum_{k=1}^{n-1} k(c(h_{k}) - c(h_{k+1})) + n \\ &\simeq n(h_{0}) - 1 + \sum_{k=1}^{n-1} k(c(h_{k}) - c(h_{k+1})) + n. \end{aligned}$$

2. EXAMPLES

All examples are one-dimensional.

EXAMPLE 1. The Cantor Set. Here

$$n(h) \asymp c(h) \asymp h^{-\log_3 2}.$$

Therefore

$$\mathscr{K}_{\varepsilon} \simeq \mathscr{H}_{\varepsilon} \simeq \varepsilon^{-\log_3 2/\alpha} = \varepsilon^{-\chi(K)/\alpha},$$

where $\chi(K)$ is the Hausdorff dimension of the Cantor set K.

Moreover, it immediately follows from (1) that if $n(h) \simeq n^{-\gamma}$, $\gamma > 0$, then $\mathscr{K}_{\varepsilon} \simeq \mathscr{K}_{\varepsilon} \simeq \varepsilon^{-\gamma/\alpha}$.

EXAMPLE 2.

$$K = \{0\} \cup \left\{\frac{1}{n} \mid n = 1, 2, \ldots\right\}.$$

Here $n(h) \simeq c(h) \simeq h^{-1/2}$, but $\chi(K) = 0$, so

$$\mathscr{K}_{\varepsilon} \simeq \mathscr{H}_{\varepsilon} \simeq \varepsilon^{-1/2\alpha} \simeq \varepsilon^{-\chi(K)/\alpha}.$$

This illustrates the fact that the considered characteristics relate not to the Hausdorff dimension but to the entropy or metric dimension of the set K [1]:

$$dm(A) := \lim_{\epsilon \to 0} \frac{\mathscr{H}_{\epsilon}(A)}{\log 1/\epsilon}$$

In this example dm(K) = 1/2.

EXAMPLE 3.

$$K = \{0\} \cup \{2^{-n} \mid n = 0, 1, \dots\}.$$

Here $n(h) \simeq c(h) \simeq \log h$. We find from (1)

$$\mathscr{K}_{\varepsilon} \asymp \log \frac{1}{\varepsilon} \qquad \mathscr{K}_{\varepsilon} \asymp \log^{2} \frac{1}{\varepsilon} \succ \mathscr{K}_{\varepsilon}.$$

In this example the estimate of $\mathscr{K}_{\varepsilon}$ does not give an estimate of the order of Kolmogorov's width $d_n(H^{\alpha}_{\infty}(I^s), C(K))$. This suggests that ε -dimension is more adequate for the problem discussed than *n*-width.

In spite of the remark after example 1 there do exist compact K with $\chi(K) > 0$ for which $\mathscr{K}_{\varepsilon} \not\simeq \mathscr{K}_{\varepsilon}$. One such is constructed in this next example.

EXAMPLE 4. A Cantor-like Set. We begin with the segment

$$\Delta_{01} = I.$$

At the kth step, k = 1, 2, ..., we construct the set of segments

$$\Delta_{ki}$$
, $i = 1, 2, ..., 2^{k(k+1)/2}$, with length $|\Delta_{ki}| = 2^{-k^2}$

To do this, let us break each $\Delta_{k-1,i}$ (with length $2^{-(k-1)^2}$) into 2^k segments with equal lengths $2^{-((k-1)^2+k)}$ and select as Δ_k the leftmost part of each

subsegment of length 2^{-k^2} . Define the compact K as the intersection of all these segment systems: $K = \bigcap_k \bigcup_i \Delta_{ki}$. As can be easily seen, $\chi(K) = 1/2$. For n(h) and c(h) when $h = 2^{-m}$ we have

$$n(2^{-m}) = \begin{cases} 2^{k(k+1)/2}, & \text{when } k^2 - k < m \le k^2, \\ 2^{k(k+1)/2 + m - k^2}, & \text{when } k^2 < m \le k^2 + k \end{cases}$$
$$c(2^{-m}) = 2^{k(k+1)/2}, & \text{when } k^2 - k + 1 < m \le k^2 + k + 1. \end{cases}$$

When, for example, $\varepsilon^{1/\alpha} = 2^{-k^2}$,

$$\mathscr{K}_{\varepsilon} \simeq 2^{k(k+1)/2}; \qquad \mathscr{K}_{\varepsilon} \simeq 2^{k(k+1)/2} \cdot k \simeq \mathscr{K}_{\varepsilon} \cdot \sqrt{\log \frac{1}{\varepsilon}}.$$

On the other hand, when $\varepsilon^{1/\alpha} = 2^{-(k^2 - k + 1)}$,

$$\mathscr{H}_{\varepsilon} \simeq 2^{k(k+1)/2}; \qquad \mathscr{H}_{\varepsilon} \simeq 2^{k(k+1)/2} + 2^{k(k-1)/2} \cdot k \simeq \mathscr{H}_{\varepsilon}.$$

It can be easily deduced from (1) that the case $\mathscr{H}_{\varepsilon} \succ \mathscr{H}_{\varepsilon}$ is impossible if $n(h) \ge n^{-\gamma}$, $\gamma > 0$. This is the case for all K with nonzero Hausdorff dimension.

References

- 1. A. N. KOLMOGOROV AND V. M. TIKHOMIROV, *e*-Entropy and *e*-capacity of sets in functional spaces, Uspekhi Mat. Nauk. 4, No. 2(86) (1959), 3-86. [Russian]
- 2. A. PINKUS, "n-Widths in Approximation Theory," Springer-Verlag, Berlin, 1985.