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This paper is devoted to the study of e-entropy of the Nikolsky classes H"x (I')
in C(K), where K is an arbitrary compact set in P. For a connected set K the order
of e-entropy is known to be the same as the order of Komolgorov's e-dimension.
Without connectedness this is not the case. The exact order is given in terms of two
functions characterizing "density" and "discontinuity" of the compact K. 11:) 1994

Academic Press, Inc.

1. THEOREMS

Let us fix some notation. In what follows s denotes the dimension of the
space where the compact set K lies, 1:= [0, 1], and r := [0, 1yeW. Let
K be some nonempty compact subset of r. We will consider the B-entropy
of the bounded Nikolsky class CH"oo (IS) := H"oo (I') () BC(I') in the
seminorm C(K):IIJ(-)llc(K):=suPxEK lf(x)l. Here BX denotes the unit
ball of the Banach space X, and for 0 < IX ~ 1, H"oo (I') := {J( .) I Vx, Y E
r If(x) - f(y)J ~ d(x, y)~}; whilefor IX> 1 H"oo (IS) := {J( .) E C1rl(I') IJ(r) E
H~(I'), IX=lrl+,8, rE7L s+, 0<,8~1}. Here Irl :=r l + ... +rs ' and
flr) := alrlj/iJx~1 '" ox:'. (For integer IX this is the ordinary Sobolev class.)
We treat [RS as a Banach space with the norm /'00 so that the distance,
d(x,y) :=max j !x j - yJ The symbol Ub(A) for a set A er means the
J-neighborhood of the set K, that is, {x E F I d(x, K) < J}. We will consider
B-entropy [1], given by

~(C, X) :=log(min{Card M I Me C, VeE Cd(e, M, X) ~ B}.

(Here d(e, M, X) is the distance of a point e from a set M in the Banach
space X; d(e, M, X) := inf{ dx(c, y) lyE M}. Here and below log means
logz.) To compare it with Kolmogorov's widths we use Kolmogorov's
B-dimension: Jt: (C, X) := min {k I dd c, X) ~ B}, where dd C, X) is the
ordinary Kolmogorov k-width of C in X [2].
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We will write, as usual,f(·)~g(·) if If(e)1 <clg(e)1 for some positive
constant c and small enough e; f( . ) x g( . ) if f( . ) ~ g( .) and g(. ) ~f( . );
f(- )-<:g(-) if limc~of(e)jg(e)=O.

To define the mentioned characteristics of "density" and "discontinuity"
(functions n(h) and c(h)) let us introduce the standard subdivision of the
cube r and some related notions. For given h > 0 and

~ = (nl, ..., nJ,

we set

B~,h := {(x I' ... , x,) E IR' I njh ~ x j< (n j+ l)h}.

(If n j = (ljh) - 1 replace the last" <" with "~" to cover the whole cube.)
Ordinarily, we set h = 2 ~k:

n(h):=Card{B~,hl B~.hnK#0}

K h :=u {B~,h I B u ,nK#0}

c(h) := the number of connected components of K h •

Thus, Kh::::J K and Kh is the union of n(h) small cubes with edge of
length h,

THEOREM I. Using the above notation,

This is a simple fact that we will not prove here. Its proof can be easily
deduced from our discussion of e-entropy.

It was shown in [1] that for a connected set K the e-entropy has the
same order. The problem of calculating the e-entropy in the general case
was posed at Tikhomirov's seminar on approximation theory and extremal
problems at the Moscow State University.

To estimate e-entropy the function n(h) alone is insufficient. The result of
this paper is the following:

THEOREM 2. Using the above notation,

(1)

Proof Note that for any a>O, n(h)~([aJ+2)'n(ah) ([a] is the
greatest integer less than or equal to a) and c(h)~n(h). It follows that for
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bounded (separated from zero) a<l, n(ah) x. n(h) and S:h(c(x)lx)dx~

S:h (n(x)lx) dx ~ n(h). It means that the order of the right-hand side of (l)
is not changed when 8 is multiplied by a bounded factor. Indeed. if 1(8)
means the right-hand side of (1) and 0 < ao< a < 1, then

and

II II fJ c(h)/(ae) ~ n(e I~) + n(e I~) + - dh ~ /(e).
elia h

Thus, it suffices to prove the theorem for some geometric sequence of en,
and, moreover, the e in the e-entropy need not be necessarily the same as
e in the right-hand part of (1 )-they may differ by a bounded factor (we
shall use this possibility later). So we set e~/~=2-n, and denote hk :=2k

-
n,

k = 0, ..., n. Using the above equivalences we obtain:

The last two sums differ by c(ho) - c(hn ) ~ n(ho). Therefore,

n-l

X n(ho) + L k(c(hd - c(hk+ 1)) + (n - 1) c(h n )

k=1

n-I

=n(ho)+ L k(c(hd-c(hk+J))+n-l.
k~1

In the last equality we use c(h n ) = c( 1) = 1. (Incidentally, c(h n _ d is also
equal to 1, but we ignore this fact.) Thus, (1) is equivalent to

n-J

Jf.(CH~(I'), C(K)))xn(ho)+n-l + 2:: k(c(hk)-c(hk+d). (2)
k=1

This is the statement we shall prove.
Let A be any set containing exactly one point from each cube B~,ho

belonging to Kho ; Card A =n(ho). We number the points of A in "the least
distance order." Namely, we assume A = {aj}7~1>' and for each i> 1
d(aj,AJ=d(A\Aj,AJ, where Aj={aj}j::, We denote the distance by
dj, dj := d(a j , AJ
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We define the rank r(a i ) of each point ai as follows. For i> 1 let r(aJ be
the minimal number r, r = 0, ..., n, such that the connected component of
K h, containing a, contains also some previous point aj' j < i. Let, by defini­
tion, r(ad = n + l.

It is clear from the definition of rank that for any point a" i ~ 2,
r := r(a i ):

hr _ , <di <2hr

and d, <2h r

when r>O

when r=O.
(3)

In any case d i ~ hr(Oi)'
We need to count the number of points a, of a given rank r; let us denote

this number by k r • For any connected component of Kh , consider the first
point ai belonging to this component. Then r(a,) > r. This establishes a
one-to-one correspondence between connected components of K h, (there
are c(hr) ones) and points ai with r(a;) > r. This means that c(hr) =
Lq>rkq. Thus

kr=c(hr_d-c(h r), r~ I,

n+ 1

ko = n(ho) - I k r = n(ho) - c(ho)'
r = l

(4)

To find the upper bound for e-entropy we construct an explicit sub­
division of CH~ (fS) into sets EfJ with diam EfJ ~ c:. Define EfJ as follows:

{ I [/(JI(a)]}EfJ:= 1(-)ECH~(fS) VaEAVj, ljl<a: h~\jl = {3(a,j) .

Here {3: A x {j I iii < a} -+ 7L. For any functions II ( '),12 ( .) E EfJ we have
for all aEA, I/}j)(a)-/Jj)(a)l<h~-lj'. Then on KcKhocUho(A) the
Taylor formula yields III (.) -12 ( . )1 ~ h~ = e. To estimate the number of
nonempty sets EfJ we build the set of all possible indexes {3 (i.e., the set of
{3 for which EfJ # 0) step by step considering the vertices ai in the order
established above. Let B k denote the set of all possible values of {3(ak> .)
when ak is fixed and the values of {3(a i,j) are fixed for all j and all i < k.
(The set Bk consists of integer vectors whose components are numbered by
the second argument of {3(ak> . ).) We shall prove that Card Bk <Mk> where
M k does not depend on the values of the previous {3(ai")' Then
Card{{3} <DMk and .Yt,,(CH"oo(IS), C(K))~logCard{{3}<LlogMk'

So, let us estimate M k • For k = 1 the condition 1(·) E CH~ (/') implies
that log M I x log l/ho= n. For any other vertex ak there exists a
nearest previous vertex a, with d(a;, ak) ~ h" where r = r(ad (in fact,
d(a i , ad x hr ). Then the values 1(J)(a,) (that are known to within an error
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~ h~ -IJI) allow us to reconstruct the derivatives at ak by the Taylor
formula with an error ~h~-IJI. Thus, each component of f3(ab') has
~ (hrlhot-IJI possible values, and in total we have

for r =0
for r> O·

Summing all this quantities and using (4) yields

n

~n+(n(ho)-c(ho))·I+ I k(c(hk_d-c(hd)
k~l

n

= n + (n(h o) - c(ho))·1 + I c(hk _ d - c(hk )
k~l

n

+ I (k-l)(c(hk_d-c(hd)
k~l

n-l

=n+n(ho)-I+ L k(c(hd)-c(hk+l))'
k~O

which is the right-hand part of (2).
To prove the lower estimate we use a different set A. Here we need A c K

and the lower bound on distances between points instead of the upper one.
Let K ho", be an arbitrary connected component of K ho and {B~j.hJ be the

corresponding set of cubes. Let us cut each cube of B~J.ho in a union of 2s

cubelets with the half-edge: B~J.ho = Ui'E[O.I}' B2~1 + y,h_,' Consider the union
of all cubelets with the same y:

Kho .;.), := U {B2~J+)'.h_l c Kho.; I B2~J+).. L, n K ¥- 0}·
J

All cubelets in Kho.i,y are disjoint with distances ;,:: h _ I = ho/2 and
U), KhO,i,y n K = Kho,; n K. Let the number of ho-cubes in Kho,i be m. Each of
them contains at least one cubelet intersecting with K. Therefore by the
Dirichlet principle there exists y such that the set Kho, i, Y contains ;,:: 2 - sm
cubelets. For such y choose one point E K from each cubelet B2~J+ )',L,' All
these points, for all connected components Kho,i' constitute the required
setA. The number of points in A,n" is ;'::2- S n(ho). We order them,
A = {a;}7~1' and define ranks as above. Then instead of (3), (4) the
following properties hold:

(5)

(6)
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(Here, as above, di is the distance between a i and the nearest previous
point; k r is the number of points of rank r).

To prove the lower bound for the 8-entropy we select a finite-dimen­
sional subset of CH~ (IS) and estimate its volume.

LEMMA. For any <5 > 0, Be JS there exists a function XJ (B)( . ) E H~ (1')
such that

Proof I suspect this is well known. However, for completeness a sketch
of the proof is given below.

We begin with a nonnegative function l/J(.) E COO(IW) such that (i)
suppl/J c [-I,I]', (ii):LnEz,l/J(·-n)=1. Such a function in W may
be constructed as a product of one-dimensional functions. The required
function XJ (B) can then be built as a sum of properly scaled t/J-functions,

(
0),," (X- y)XJ(B)(x):= I c - t/J - ,

yE (J/2)ZJ' n 1/0,2 (B) 2 <5/2

where c is chosen so that 2sct/J(·) E H~ (1'). Then any sum of ct/J(· - n) over
a subset of 7F will be from H~ (1'). The desired properties of XJ (B)
immediately follow from the definition. I

Without loss of generality we can assume that Cl is not very large (we
need this later).

Let us define a function qJa(') for each point aEA as follows: If a=a 1

then qJa := 1/2. Otherwise qJa := C2
1
X(l/8) h,( U(I/8)h,(A(a»)), where r = r(a);

A(a), when r>O, is the subset Ah,(al_l. i that contains a; for r(a)=O,
A(a) := a; the constant C2 will be determined later. The property (5) implies
that

a # b => supp qJ~ (\ supp qJ~ = 0, (7)

where supp qJ' denotes the union of supports of all derivatives of cp. Indeed,
supp qJ~ c U(l/4)h,(A(a))\U(I/8)h,(A(a)) and all such subsets do not inter­
sect each other. The supports of the functions qJa can intersect but only for
points of different ranks:

a#b, supp qJa (\ supp qJb -# 0 => r(a) -# r(b). (8)

This also follows from (5). The last consequence of (5):

for each j < i. (9)
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Let us define the set Q of functions
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We shall prove that Qc CH'"oo (n. The first step is to prove Qc H~ (F).
To do this we need some long and not very elegant reasoning. Here it is.

We use the definition of H~ (F) directly and estimate Ipr)(x) - j(r)(y)1
forjEQ, IX=lrl+p, rEZ s+, O<P~1. Denote L1j:=lj(r)(x)_j(r)(y)l.
Then L1j~L.aEA Iwal L1CPa~L.aEA L1CPa' We can exclude the term for a=a,
from the last sum because it does not contribute to the sum. For each of
the other CPa=c;I X(1/S)h,(U(I/S)h,(A(a))), split the cubeI' into a union of
three nonintersecting sets, A I, A 2, and A 3 :

A1(a):= U(I/S)h,(A(a)); A 2(a):= U(I/4)h,(A(a))\U(1/Slh,(A(a));

A 3(a) := I'\U(1/4)h,(A(a))

Then

CPa/Al = canst = "CPa" = C;lel (khr(a)t

A 2 ::::J supp cP~

CPaIAJ=O.

For all functions lfJa let us see in which set the points x and y lie and split
the sum accordingly into nine parts,

where L.jk' j, k= 1, 2, 3, is the sum of L1cpa over all a such that xEAj(a),
YEAk(a). Property (7) means that EI2+E21+E22+E23+E32 (all sums
including "2") contains at most two terms (one A 2 including x and maybe
another includingy), so E'2+E21+E22+E23+E32~2c;ld(x, y)P because
each CPa is from C;IH'"oo(lS). For IX> 1 the remaining sums are all zero
because L1cpa involves only derivatives. So it remains to consider the case
IX ~ 1, in which case P= a.

In any case E 33 = O. Also Ell = 0 because on A 1 the function CPa is
constant and L1CPa=O. To estimate, say E 13 note that for points a in
E'3 L1CPa= "CPa" =clc;l(khr(aY; and, by (8), all points a in that sum have
different ranks so it can be estimated by use of the geometric series:
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Vx E I'"

where a is the point of maximal rank among all those included in E 13" But
qJiiEC:;lH"ocUS), so E 13 <(1/(1-2- a ))C:;ld(x,y)P. Clearly, E 3 \ has the
same bound and finally, for any IX,

So the setting Cz = 2 + 2/(1 - 2 -') ensures Q c H"oo US).
To verify inclusion into BCUS) let us estimate IIfll, fE Q. Let

f = L. W aqJ a( . ) E Q. Then

If(x)1 = II WaqJaCX)I,;:;; L IqJa(x)\
UEA aEA

<l'a('<)"O

aEA
x E SUPPifJa

aE A
~ESUPPCPa

a¥al.

Property (8) implies that all rea) in the last sum are different; therefore, we
can write the upper estimate for the last sum,

for properly bounded CI'

Let us now turn to finite-dimensional sets. We have

.Yt:(CH~ (r), C(K))? .Yt:(Q, C(K))? .Yt:(Q, C(A)) = .Yt:(QIA' C(A)),

where QI A means the set of all functions in Q restricted to the set A.
The set A is finite, Card A = n\, so the set QIA is in natural one-to-one
correspondence with a finite-dimensional set Q' c WI (f(.)~ <f(a;»).
Moreover, this correspondence is an isometry between C(A) and ''do. So
the e-entropy of QI A is equal to that of Q' and the last can be estimated
by the volume of Q' in WI: .Yt: (Q', C(A))? log(mes Q' j(2et l

). Later we do
not distinguish QI A and Q'. Let us consider the linear mapping of the cube
{(Wa)ElRn l

/ VaEA Iwal';:;; 1} onto Q' that maps each vector (w a ) to a func­
tion L.aEA waqJa(')' Property (9) means that the matrix of this mapping
(flj) = (<Pai(aj » has a triangular form, so its determinant is equal to the
product of the diagonal elements, qJai(a j ), and the volume of the image,
mes Q', is

I1 2<pa(a) = I1 2 IlqJall = ( I1 2c1:;I(ihr(aJ)a).1
aEA aEA UEA'
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(here A I = A \ {a I})' The estimate of .J't;. follows,

1
.J't;. ~ L (cdog hr(a) -log € + c3 ) + log "2

aE A' €

n I
= I kr ·(cdoghr -Iog€+c3 )+log2€

r=O

177

where kr=Card{aEA I r(a)=r}; the values of k r can be found in (6). We
can multiply € by an appropriate constant (as we have mentioned above,
it does not change the order of .J't;.) so that:x. log ho -log €+ C3 = 1 (we will
now have €= ch~). Then for r > 0, :x. log hr -log € + C3 x r, log 1/2€ x n.
Thus

n

.J't;.~nl-c(ho)+ L k(c(hk_d-c(hk)+n
k~l

n-l

=n1-c(ho)+ L (k+ 1)(c(hd-c(hk+1))+n
k~O

n-l n-l

=nl-c(ho)+ L: c(hk )-c(hk+1 )+ L: k(c(hd-c(hk+1»+n
k~O k~1

n-I

=n 1 -l+ I k(c(hd-c(hk+1»+n
k~l

n-I

~2-Sn(ho)-1+ L k(c(hd-c(hk+d)+n
k= 1

n-I

xn(ho)-I+ L k(c(hk)-c(hk+tl)+n. I
k~l

2. EXAMPLES

All examples are one-dimensional.

EXAMPLE 1. The Cantor Set. Here

Therefore

where X(K) is the Hausdorff dimension of the Cantor set K.
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Moreover, it immediately follows from (l) that if n(h)::=:: n -Y, Y> 0, then
x: ::=:: J'l,; ::=:: 8 - y/a.

EXAMPLE 2.

K = {o} u {~ In = 1, 2, ...}.

Here n(h)::=::c(h)::=::h- I
/
2

, but X(K)=O, so

x:::=:: J'l,; ::=:: I' - 1/2a * 8 - x(K)/a.

This illustrates the fact that the considered characteristics relate not to
the Hausdorff dimension but to the entropy or metric dimension of the
set K [1]:

I
. J'l,;(A)

dm(A):= 1m-I1/
£ ~O og I'

In this example dm(K) = 1/2.

EXAMPLE 3.

K= {a} u {2-n I n=O, 1, ... }.

Here n(h) ::=:: c(h) ::=:: log h. We find from (1 )

t
x:::=:: log­

I'

2 t
J'l,; ::=:: log - >- X:.

I'

In this example the estimate of x: does not give an estimate of the order
of Kolmogorov's width dn (H"oc (F), C(K)). This suggests that e-dimension
is more adequate for the problem discussed than n-width.

In spite of the remark after example t there do exist compact K with
X(K) > 0 for which x: * J'l,;. One such is constructed in this next example.

EXAMPLE 4. A Cantor-like Set. We begin with the segment

,101 = I.

At the kth step, k = 1, 2, ... , we construct the set of segments

,1 k;, i = 1, 2, ..., 2 k (k + 1)/2,

To do this, let us break each ,1 k _ 1 i (with length 2-(k-I)2) into 2 k segments
• 2 •

With equal lengths 2-((k-l) +k) and select as ,1 k the leftmost part of each
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subsegment of length 2 _k
2
• Define the compact K as the intersection of all

these segment systems: K = nk Ui 11 ki' As can be easily seen, X(K) = 1/2.
For n(h) and c(h) when h = 2 -m we have

c(2 -m) = 2k (k+ 1)/2,

When, for example, cl/~ =2 _k
2
,

when k 2 -k < m ~ k 2
,

when k 2 < m ~ k 2 + k

when k 2
- k + 1 < m ~ k 2 + k + 1.

Jt';; X 2k (k + 1)12 . k x .x: .JIOg ~.

Jt';; X 2k (k + 1)/2 + 2k (k - 1)/2. k x .x:.
It can be easily deduced from (l) that the case ~>-.x: is impossible

if n(h) ~ n -', y > O. This is the case for all K with nonzero Hausdorff
dimension.
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